انرژی هسته ای کاربرداری زیاد در پزشکی در علوم و صنعت و کشاورزی و... دارد. لازم به ذکر است انرژی هسته ای به تمامی انرژی های دیگر قابل تبدیل است ولی هیچ انرژی به انرژی هسته ای تبدیل نمی شود.


من در این تحقیق ابتدا از کاربرد های انرژی هسته ای شروع کردم تا موضوع جذاب تر گردد سپس به توضیح روش بهره برداری از اورانیم ومختصری نیز به فیزیک هسته ای پرداختم.

  فهرست عناوین

عنوان صفحه

مقدمه 1   

نیروگاه هسته ای 2

کاربرد های انرژی هسته ای 2 

اورانیم چیست؟ 5

اورانیم رابهتر بشناسیم 6   

فراوری 8

فیزیک هسته ای چیست 14 









انرژی هسته ای کاربرداری زیاد در پزشکی در علوم و صنعت و کشاورزی و... دارد. لازم به ذکر است انرژی هسته ای به تمامی انرژی های دیگر قابل تبدیل است ولی هیچ انرژی به انرژی هسته ای تبدیل نمی شود.


من در این تحقیق ابتدا از کاربرد های انرژی هسته ای شروع کردم تا موضوع جذاب تر گردد سپس به توضیح روش بهره برداری از اورانیم ومختصری نیز به فیزیک هسته ای پرداختم.




  باتشکر : اندیشه عباسیان , یوسف قبادی  1389   









نیروگاه هسته ای: 
نیروگاه هسته ای (Nuclear Power Station) یک نیروگاه الکتریکی که از انرژی تولیدی شکست هسته اتم اورانیوم یا پلوتونیم استفاده می کند. اولین جایگاه از این نوع در 27 ژوئن سال 1958 در شوروی سابق ساخته شد. که قدرت آن 5000 کیلو وات است. چون شکست سوخت هسته ای اساساً گرما تولید می کند از گرمای تولید شده رآکتور های هسته ای برای تولید بخار استفاده می شود از بخار تولید شده برای به حرکت در آوردن توربین ها و ژنراتور ها که نهایتاً برای تولید برق استفاده می شود . 
بمب های هسته ای: 
این نوع بمب ها تا حالا قویترین بمبهای و مخربترین های جهان محسوب می شود. دارندگان این نوع بمبهاجزو قدرت های هسته ای جهان محسوب می شود . 
پیل برق هسته ای Nuclear Electric battery: 
پیل هسته ای یا اتمی دستگاه تبدیل کننده انرژی اتمی به جریان برق مستقیم است ساده ترین پیل ها شامل دو صفحه است. یک پخش کننده بتای خالص مثل استرنیوم 90 و یک هادی مثل سیلسیوم. 
جریان الکترون های سریعی که بوسیله استرنیوم منتشر می شود ازمیان نیم هادی عبور کرده و در حین عبور تعداد زیادی الکترون ها اضافی را از نیم هادی جدامی کند که در هر حال صدها هزار مرتبه زیادتر از جریان الکتریکی حاصل از ایزوتوپ رادیواکتیو استرنیوم 90 می باشد . 
کاربردهای پزشکی: 
در پزشکی تشعشعات هسته ای کاربردهای زیادی دارند که اهم آنها عبارتند از: 
• رادیو گرافی 
• گامااسکن 
• استرلیزه کردن هسته ای و میکروب زدایی وسایل پزشکی با پرتو های هسته ای 
• رادیو بیولوژی 
 
کاربرد انرژی هسته ای در بخش دامپزشکی و دامپروری : 
تکنیکهای هسته ای در حوزه دامپزشکی موارد مصرفی چون تشخیص و درمان بیماریهای دامی ، تولید مثل دام ، اصلاح نژاد و دام ، تغذیه ، بهداشت و ایمن سازی محصولات دامی و خوراک دام دارد. 
کاربرد انرژی هسته ای در دسترسی به منابع آب : 
تکنیکهای هسته ای برای شناسایی حوزه های آب زیر زمینی هدایت آبهای سطحی و زیر زمینی ، کشف و کنترل نشت و ایمنی سدها مورد استفاده قرار میگیرد. در شیرین کردن آبهای شور نیز انرژی هستهای کاربرد دارد. 
کاربردهای کشاورزی: 
تشعشعات هسته ای کاربرد های زیادی در کشاورزی دارد که مهم ترین آنها عبارتست از: 
• موتاسیون هسته ای ژن ها در کشاورزی 
• کنترل حشرات با تشعشعات هسته ای 
• جلوگیری از جوانه زدن سیب زمینی با اشعه گاما 
• انبار کردن میوه ها 
• دیرینه شناسی )باستان شناسی) و صخره شناسی )زمین شناسی) که عمر یابی صخره ها با C14 در باستان شناسی خیلی مشهور است. 
کاربردهای صنعتی: 
در صنعت کاربردها ی زیادی دارد از جمله مهمترین آنها عبارتند از: 
• نشت یابی با اشعه 
• دبی سنجی پرتویی(سنجش شدت تشعشعات ، نور و فیزیک امواج) 
• سنجش پرتویی میزان سائیدگی قطعات در حین کار 
• سنجش پرتویی میزان خوردگی قطعات 
• چگالی سنج موادمعدنی با اشعه 
• کشف عناصر نایاب در معادن 
آنچه باید بدانیم: 
تکنیکهای هسته ای بر کشف مینهای ضد نفر نیز کاربرد دارد. بنابرین ، دانش هسته ای با این قدرت و وسعتی که دارد، هر روز بر دامنه استفاده از فناوری هسته ای و بویژه انرژی هسته ای افزوده می شود. کاربرد انرژی در بخشهای مختلف به گونهای است که اگر کشوری فناوری هسته ای را نهادینه نماید، در بسیاری از حوزه‌های علمی و صنعتی ، ارتقای پیدا می کند و مسیر توسعه را با سرعت طی می نماید.
انرژی هسته ای در پزشکی هسته ای و امور بهداشتی: 
در کشورهای پیشرفته صنعتی ، از انرژی هسته ای به صورت گسترده در پزشکی استفاده می گردد. با توجه به شیوع برخی از بیماریها از جمله سرطان ، ضرورت تقویت طب هسته ای در کشورهای در حال توسعه ، هر روز بیشتر می شود. موارد زیر از مصادیق تکنیکهای هسته ای در علم پزشکی است: 
تهیه و تولید کیتهای رادیو دارویی جهت مراکز پزشکی هسته ای 
تهیه و تولید رادیو دارویی جهت تشخیص بیماری تیرویید و درمان آنها 
تهیه و تولید کیتهای هورمونی 
تشخیص و درمان سرطان پروستات 
تشخیص سرطان کولون ، روده کوچک و برخی سرطانهای سینه 
تشخیص تومورهای سرطانی و بررسی تومورهای مغزی ، سینه و ناراحتی وریدی 
تصویر برداری بیماریهای قلبی ، تشخیص عفونتها و التهاب مفصلی ، آمبولی و لختههای وریدی 
موارد دیگری چون تشخیص کم خونی ، کنترل رادیو داروهای خوراکی و تزریقی و ... 
کاربرد انرژی هسته ای در تولید برق : 
یکی از مهم ترین موارد استفاده صلح آمیز از انرژی هسته ای ، تولید برق از طریق نیروگاههای اتمی است. با توم به پایان پذیر بودن منابع فسیلی و روند رو به رشد توسعه اجتماعی و اقتصادی ، استفاده از انرژی هسته ای برای تولید برق را امری ضروری و لازم می دانند و ساخت چند نیروگاه اتمی را دنبال مینماید. 
ایران هر ساله حدودا به هفت هزار مگاوات برق در سال نیاز دارد. نیروگاه اتمی بوشهر 1000 مگاوات برق را در صورت راه اندازی تامین می نماید. و احداث نیروگاههای دیگر برای رفع این نیازی ضروری است. برای تولید میزان برق حدود 190 میلیون بشکه نفت خام مصرف می شود. که در صورت تامین از طریق انرژی هسته ای سالیانه 5 میلیارد دلار صرفه جویی خواهد شد. 
برتری انرژی هسته ای بر سایر انرژیها: 
علاوه بر صرفه اقتصادی دلایل زیر استفاده از انرژی هسته ای را ضروری مینماید. منابع فسیلی محدود بوده و متعلق به نسلهای آتی میباشد. استفاده از نفت خام در صنایع تبدیل پتروشیمی ارزش بیشتری دارد. تولید برق از طریق نیروگاه اتمی ، آلودگی نیروگاههای کنونی را ندارد. تولید هفت هزار مگاوات با مصرف 190 میلیون شبکه نفت خام ، هزارتن دیاکسید کربن ، 150 تن ذرات معلق در هوا ، 130 تن گوگرد و 50 تن اکسید نیتروژن را در محیط زیست پراکنده می کند، در حالی که نیروگاه اتمی چنین آلودگی را ندارد. 
 
اورانیم چیست 
اورانیوم كه ماده خام اصلی مورد نیاز برای تولید انرژی در برنامه های صلح آمیز یا نظامی هسته ای است، از طریق استخراج از معادن زیرزمینی یا سر باز بدست می آید. اگر چه این عنصر بطور طبیعی در سرتاسر جهان یافت می شود تنها حجم كوچكی از آن بصورت متراكم در معادن موجود است. 
اورانیوم چیست؟
یکی از چگالترین فلزات رادیو اکتیو است که در طبیعت یافت می شود. این فلز در بسیاری از قسمتهای دنیا در صخره ها، خاک و حتی اعماق دریا و اقیانوس ها وجود دارد. اگر بخواهید از میزان موجودیت آن ایده ای بدست آورید باید بگوییم که میزان وجود و پراکندگی آن از طلا، نقر یا جیوه بسیار بیشتر است. 
اورانیوم در طبیعت بصورت اکسید و یا نمک های مخلوط در مواد معدنی (مانند اورانیت یا کارونیت) یافت می شود. این نوع مواد اغلب از فوران آتشفشانها بوجود می آیند و نسبت وجود آنها در زمین چیزی معادل دو در میلیون نسبت به سایر سنگها و مواد کانی است. این فلز به رنگ سفید نقره ای است و کمی نرم تر از استیل بوده و تقریباً قابل انعطاف است. اورانیوم در سال 1789 توسط مارتین کلاپورت (Martin Klaproth) شیمی دان آلمانی از نوعی اورانیت بنام Pitchblende کشف شد. وجه تسمیه این فلز به کشف سیاره اورانوس بازمی گردد که هشت سال قبل از آن، ستاره شناسان آن را کشف کرده بودند. اورانیوم یکی از اصلی ترین منابع گرمایشی در مرکز زمین است و بیش از 40 سال است که بشر برای تولید انرژی از آن استفاده می کند. دانشمندان معتقد هستند که اورانیوم بیش از 6.6 بیلیون سال پیش در اثر انفجار یک ستاره بزرگ بوجود آمده و در منظومه شمسی پراکنده شده است. برای درک بهتر از توانایی اورانیوم در تولید انرژی لازم است نگاهی به ساختمان اتمی این فلز داشته باشیم.

اورانیوم را بهتر بشناسیم
اورانیوم را درواقع می توان سنگین ترین (به بیان دقیقتر چگالترین) عنصر در طبیعت نامید. شاید بد نباشد بدانید که در این میان هیدروژن سبک ترین عناصر طبیعت است. اورانیوم خالص حدود 18.7 بار از آب چگالتر است و همانند بسیاری از دیگر مواد رادیو اکتیو در طبیعت بصورت ایزوتوپ یافت می شود. بطور ساده ایزوتوپ حالت خاصی از حضور یک عنصر در طبیعت است که در هسته آن به تعداد مساوی - با عنصر اصلی - پروتون وجود دارد اما تعداد نوترون های آن متفاوت است. بنابراین طبق این تعریف ساده می توان دریافت که ایزوتوپ های یک عنصر عدد اتمی مشابه خود عنصر را خواهند داشت اما وزن اتمی متفاوتی دارند. اورانیوم شانزده ایزوتوپ دارد که هریک از آنها دارای وزن اتمی خاصی هستند. حدود 99.3 درصد از اورانیومی که در طبیعت یافت می شود ایزوتوپ 238 (U-238) است و حدود 0.7 درصد ایزوتوپ 235 (U-235)، كه هر دو دارای تعداد پروتون یكسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است كه در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بیانگر مجموع تعداد پروتونها و نوترونها در هسته هر كدام از این دو ایزوتوپ است. سایر ایزوتوپ ها بسیار نادر هستند. در این میان ایزوتوپ 235 برای بدست آوردن انرژی از نوع 238 آن بسیار مهمتر است چرا که U-235 (با فراوانی تنها 0.7 درصد) آمادگی آن را دارد که تحت شرایط خاص شکافته شده و مقادیر زیادی انرژی آزاد کند. به این ایزوتوپ Fissil Uranium، به معنای اروانیوم شکافتنی هم گفته می شود و برای این عملیات از اصطلاح شکافت هسته ای یا Nuclear Fission استفاده می شود. اورانیوم نیز همانند سایر مواد رادیواکتیو دچار پوسیدگی و زوال می شود. مواد رادیو اکتیو دارای این خاصیت هستند که از خود بطور دائم ذرات آلفا و بتا و یا اشعه گاما منتشر می کنند. U-238 با سرعت بسیار کمی فسیل می شود و نیمه عمر آن چیزی در حدود 4,500 میلون سال (تقریبآ معادل عمر زمین) است. این موضوع به این معنی است که با فسیل شدن اورانیوم با همین سرعت کم انرژی معادل 0.1 وات برای هر یک تن اورانیوم تولید می شود و این برای گرم نگاه داشتن هسته زمین کافی است.

نگاهی به شکاف هسته ای اورانیوم
هنگامی كه هسته اتم اورانیوم در یك واكنش زنجیره ای شكافته شود مقداری انرژی آزاد خواهد شد.
گفتیم که U-235قابلیت شکاف هسته ای دارد. این نوع از اتم اورانیوم دارای 92 پروتون و 143 نوترون است (بنابراین جمعآ 235 ذره در هسته خود دارد و به همین دلیل U-235 نامیده می شود)، کافی است یک نوترون دریافت کند تا بتواند به دو اتم دیگر تبدیل شود. برای شكافت هسته اتم اورانیوم، یك نوترون به هسته آن شلیك می شود و در نتیجه این فرایند، اتم مذكور به دو اتم كوچكتر تجزیه شده و تعدادی نوترون جدید نیز آزاد می شود كه هركدام به نوبه خود میتوانند هسته های جدیدی را در یك فرایند زنجیره ای تجزیه كنند. 
در این حالت یک اتم U-235 به دو اتم دیگر تقسیم می شود و دو ، سه و یا بیشتر نوترون آزاد می شود. نوترون های آزاد شده خود با اتم های دیگر U-235 ترکیب می شوند و آنها را تقسیم کرده و به همین منوال یک واکنش زنجیره ای از تقسیم اتم های U-235 تشکیل می شود. مجموع جرم اتمهای كوچكتری كه از تجزیه اتم اورانیوم بدست می آید از كل جرم اولیه این اتم كمتر است و این بدان معناست كه مقداری از جرم اولیه كه ظاهرا ناپدید شده در واقع به انرژی تبدیل شده است، و این انرژی با استفاده از رابطه ۲E=MC یعنی رابطه جرم و انرژی كه آلبرت اینشتین نخستین بار آنرا كشف كرد قابل محاسبه است.
برای بدست آوردن بالاترین بازدهی در فرایند زنجیره ای شكافت هسته باید از اورانیوم ۲۳۵ استفاده كرد كه هسته آن به سادگی شكافته میشود. هنگامی كه این نوع اورانیوم به اتمهای كوچكتر تجزیه میشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو یا سه نوترون جدید نیز رها میشود كه در صورت برخورد با اتمهای جدید اورانیوم بازهم انرژی حرارتی بیشتر و نوترونهای جدید آزاد میشود.
اما بدلیل "نیمه عمر" كوتاه اورانیوم ۲۳۵ و فروپاشی سریع آن، این ایزوتوپ در طبیعت بسیار نادر است بطوری كه از هر ۱۰۰۰ اتم اورانیوم موجود در طبیعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگینتر U۲۳۸ است.

فراوری
سنگ معدن اورانیوم بعد از استخراج، در آسیابهائی خرد و به گردی نرم تبدیل میشود. گرد بدست آمده سپس در یك فرایند شیمیائی به ماده جامد زرد رنگی تبدیل میشود كه به كیك زرد موسوم است. كیك زرد دارای خاصیت رادیو اكتیویته است و ۶۰ تا ۷۰ درصد آنرا اورانیوم تشكیل میدهد. 
دانشمندان هسته ای برای دست یابی هرچه بیشتر به ایزوتوپ نادر U۲۳۵ كه در تولید انرژی هسته ای نقشی كلیدی دارد، از روشی موسوم به غنی سازی استفاده می كنند. برای این كار، دانشمندان ابتدا كیك زرد را طی فرایندی شیمیائی به ماده جامدی به نام هگزافلوئورید اورانیوم تبدیل میكنند كه بعد از حرارت داده شدن در دمای حدود ۶۴ درجه سانتیگراد به گاز تبدیل میشود. 
هگزافلوئورید اورانیوم كه در صنعت با نام ساده هگز شناخته میشود ماده شیمیائی خورنده ایست كه باید آنرا با احتیاط نگهداری و جابجا كرد. به همین دلیل پمپها و لوله هائی كه برای انتقال این گاز در تاسیسات فراوری اورانیوم بكار میروند باید از آلومینیوم و آلیاژهای نیكل ساخته شوند. همچنین به منظور پیشگیری از هرگونه واكنش شیمیایی برگشت ناپذیر باید این گاز را دور از معرض روغن و مواد چرب كننده دیگر نگهداری كرد.

غنی سازی
هدف از غنی سازی تولید اورانیومی است كه دارای درصد بالایی از ایزوتوپ ۲۳۵ U باشد. اورانیوم مورد استفاده در راكتورهای اتمی باید به حدی غنی شود كه حاوی ۲ تا ۳ درصد اورانیوم ۲۳۵ باشد، در حالی كه اورانیومی كه در ساخت بمب اتمی بكار میرود حداقل باید حاوی ۹۰ درصد اورانیوم ۲۳۵ باشد. یكی از روشهای معمول غنی سازی استفاده از دستگاههای سانتریفوژ گاز است. سانتریفوژ از اتاقكی سیلندری شكل تشكیل شده كه با سرعت بسیار زیاد حول محور خود می چرخد. هنگامی كه گاز هگزا فلوئورید اورانیوم به داخل این سیلندر دمیده شود نیروی گریز از مركز ناشی از چرخش آن باعث میشود كه مولكولهای سبكتری كه حاوی اورانیوم ۲۳۵ است در مركز سیلندر متمركز شوند و مولكولهای سنگینتری كه حاوی اورانیوم ۲۳۸ هستند در پایین سیلندر انباشته شوند. ( شکل 3 ) اورانیوم ۲۳۵ غنی شده ای كه از این طریق بدست می آید سپس به داخل سانتریفوژ دیگری دمیده میشود تا درجه خلوص آن باز هم بالاتر رود. این عمل بارها و بارها توسط سانتریفوژهای متعددی كه بطور سری به یكدیگر متصل میشوند تكرار میشود تا جایی كه اورانیوم ۲۳۵ با درصد خلوص مورد نیاز بدست آید. 
آنچه كه پس از جدا سازی اورانیوم ۲۳۵ باقی میماند به نام اورانیوم خالی یا فقیر شده شناخته میشود كه اساساً از اورانیوم ۲۳۸ تشكیل یافته است. اورانیوم خالی فلز بسیار سنگینی است كه اندكی خاصیت رادیو اكتیویته دارد و از آن برای ساخت گلوله های توپ ضد زره پوش و اجزای برخی جنگ افزار های دیگر از جمله منعكس كننده نوترونی در بمب اتمی استفاده می شود. یك شیوه دیگر غنی سازی روشی موسوم به دیفیوژن یا روش انتشاری است. دراین روش گاز هگزافلوئورید اورانیوم به داخل ستونهایی كه جدار آنها از اجسام متخلخل تشكیل شده دمیده میشود. سوراخهای موجود در جسم متخلخل باید قدری از قطر مولكول هگزافلوئورید اورانیوم بزرگتر باشد. در نتیجه این كار مولكولهای سبكتر حاوی اورانیوم ۲۳۵ با سرعت بیشتری در این ستونها منتشر شده و تفكیك میشوند. این روش غنی سازی نیز باید مانند روش سانتریفوژ بارها و باره تكرار شود. سانتریفیوژ هایی که برای غنی سازی اورانیوم استفاده می شود حالت خاصی دارند که برای گاز تهیه شده اند که به آنها Hyper-Centrifuge گفته می شود. پیش از آنکه دانشمندان از این روش برای غنی سازی اورانیوم استفاده کنند از تکنولوژی خاصی بنام Gaseous Diffusion به معنی پخش و توزیع گازی استفاده می کردند.

راكتور هسته ای
راكتور هسته ای وسیله ایست كه در آن فرایند شكافت هسته ای بصورت كنترل شده انجام می گیرد. انرژی حرارتی بدست آمده از این طریق را می توان برای بخار كردن آب و به گردش درآوردن توربین های بخار ژنراتورهای الكتریكی مورد استفاده قرار داد. اورانیوم غنی شده ، معمولا به صورت قرصهائی كه سطح مقطعشان به اندازه یك سكه معمولی و ضخامتشان در حدود دو و نیم سانتیمتر است در راكتورها به مصرف میرسند. این قرصها روی هم قرار داده شده و میله هایی را تشكیل میدهند كه به میله سوخت موسوم است. میله های سوخت سپس در بسته های چندتائی دسته بندی شده و تحت فشار و در محیطی عایقبندی شده نگهداری می شوند. 
در بسیاری از نیروگاهها برای جلوگیری از گرم شدن بسته های سوخت در داخل راكتور، این بسته ها را داخل آب سرد فرو می برند. در نیروگاههای دیگر برای خنك نگه داشتن هسته راكتور ، یعنی جائی كه فرایند شكافت هسته ای در آن رخ میدهد ، از فلز مایع (سدیم) یا گاز دی اكسید كربن استفاده می شود. برای تولید انرژی گرمائی از طریق فرایند شكافت هسته ای ، اورانیومی كه در هسته راكتور قرار داده میشود باید از جرم بحرانی بیشتر (فوق بحرانی) باشد. یعنی اورانیوم مورد استفاده باید به حدی غنی شده باشد كه امكان آغاز یك واكنش زنجیره ای مداوم وجود داشته باشد. برای تنظیم و كنترل فرایند شكافت هسته ای در یك راكتور از میله های كنترلی كه معمولا از جنس كادمیوم است استفاده میشود. این میله ها با جذب نوترونهای آزاد در داخل راكتور از تسریع واكنشهای زنجیره ای جلوگیری میكند. زیرا با كاهش تعداد نوترونها ، تعداد واكنشهای زنجیره ای نیز كاهش می یابد. حدوداً ۴۰۰ نیروگاه هسته ای در سرتاسر جهان فعال هستند كه تقریبا ۱۷ درصد كل برق مصرفی در جهان را تامین می كنند. از جمله كاربردهای دیگر راكتورهای هسته ای، تولید نیروی محركه لازم برای جابجایی ناوها و زیردریایی های اتمی است.

دفن اورانیوم مصرف شده
پس از استفاده از اورانیوم برای تولید انرژی در رآکتور هسته ای، این سوخت دیگر قابل استفاده نیست و باید به روشی بازیافت یا دفن شود، که به دلیل تشعشع زیاد کار ساده ای نیست. روش کار این است که معمولآ سوخت مصرف شده را در حوضچه هایی برای سرد شدن اولیه نگهداری می کنند، به این ترتیب علاوه بر سرد شدن تا حدی از شدت تشعشع آنها کاسته می شود. این حوضچه ها به گونه ای ساخته شده اند که اجازه وارد کردن آسیب به طبیعت را از این مواد می گیرند، درواقع می توان برای مدتهای طولانی این زباله ها را در این حوضچه ها نگهداری کرد اما به دلایل بسیاری از جمله موارد اقتصادی این کار ممکن نیست. لذا باید روی سوخت فرآیندهایی انجام بگیرد تا بتوان آنرا در انبارهایی که از آنها نام بردیم ذخیره کرد. این فرآیندها شامل فعالیت هایی است که توسط آنها اورانیوم و پلوتونیوم (پلوتونیوم به دلیل سادگی عملیات fission بیشتر در ساخت سلاح های اتمی بکار برده می شود) از سایر مواد جدا می شوند. برای اینکار میله های سوختی را خرد کرده و آنها را در ظروف اسید قرار می دهند، اورانیوم و پلوتونیوم بازیافت شده به ابتدای چرخه سوخت باز می گردند تا قابل استفاده شوند و مازاد تفاله های سوختی را برای دفن آماده می کنند. 

کاربردهای انرژی هسته ای
انرژی هسته ای در پزشکی : کاربرد انرژی هسته ای در پزشکی به دو بخش تقسیم می شود : تشخیص و درمان. پزشکی هسته ای یکی از شاخه های علم پزشکی است که در آن از مواد رادیواکتیو برای تشخیص و درمان بیماری ها استفاده می شود .به گزارش تارنمای سازمان انرژی اتمی ایران ، در زمینه تشخیص بیماری ها از رادیوداروهای (داروهایی متشکل از مواد رادیواکتیو ) مختلف درتصویر برداری جهت تشخیص و بررسی تومورهای سرطانی ، بررسی بیماری های کبد و کیسه صفرا ، بررسی عفونت و التهاب مفصلی استفاده می شود. هم چنین این مواد در تشخیص گرفتگی عروق خونی ، تشخیص نارسائی های قلب، کلیه و سایر ارگان های بدن کاربرد دارند. در آنالیز خون، پروتئین ها و سرم ها از پرتوهای رادیواکتیو استفاده می شود. هم چنین برخی از رادیوداروها تولید شده اند که برای تشخیص بیماری هایی مثل تیروئید به کار می روند. MRI نیز یکی از روش های تشخیصی در پزشکی هسته ای است . در حوزه درمان بیماری ها، رادیو داروهای مختلفی ساخته شده اند که برای از بین بردن کیست ها وتومورهای سرطانی استفاده می شوند. هم چنین در برخی از بیماری های مغزی می توان بدون نیاز به باز کردن جمجمه از اشعه برای جراحی استفاده کرد . در بیست سال اخیر جراحی پرتوی، اولین راه درمان پس از استفاده از شیمی درمانی ، پرتو درمانی و جراحی بوده است .
دانشمندان پزشکی هسته ای در حال بررسی روش های تشخیصی جدیدی هستند تا بتوانند میزان عناصر اصلی و مهم موجود در بدن جنین را اندازه گیری کرده و با تغییر آنها پیش از تولد، از بروز ناهنجاری ها در نوزادان جلوگیری کنند.

انرژی هسته ای در بهداشت: در سترون سازی وسایل یکبارمصرف پزشکی از پرتوهای رادیواکتیو استفاده می شود. هم چنین در صورتی که مواد اولیه داروها و مواد بهداشتی یا محصولات استریل پزشکی آلودگی داشته باشند، این آلودگی با کمک مواد رادیو اکتیو قابل اندازه گیری است. با این روش آلودگی سبزیجات بسته بندی شده نیز قابل اندازه گیری است .

انرژی هسته ای در کشاورزی: از طریق روش های هسته ای اصلاح بذر، بذرگیاهانی مثل گندم ، برنج ، جو و پنبه به نحوی تغییر داده می شوند که در برابر بیماری های قارچی، سرما، خوابیدگی و مقاوم باشند. هم چنین با استفاده از این روش بذر و نهال گیاهان شورپسند با هدف پرورش و برداشت محصول در شرایط نامناسب وبرای جلوگیری از افزایش بیابانی شدن اراضی تولید می شود .
انرژی هسته ای در دامپزشکی و دامپروری: در تشخیص و درمان بیماریهای دام، تولید مثل دام، اصلاح نژاد دام در جهت بازدهی بیشتر مثل اصلاح نژاد گاوها به صورتی که گوشت قابل استفاده آنها به حداکثر برسد، از روش های هسته ای استفاده می شود.درخصوص بهداشت وایمن سازی¬خوراک¬دام از¬پرتوهای رادیواکتیو،میتوان بهره جست 

انرژی هسته ای در صنعت: چشمه های رادیواکتیو در صنعت برای بررسی جوشکاری های صنعتی ، جوش لوله های نفت و گاز و نشت یابی لوله های انتقال به کار می رود. از میکروسکوپ های الکترونی می توان در اندازه گیری لایه های اپتیکی ، کالیبره کردن دستگاه های اندازه گیری ، تعیین خواص مکانیکی مواد ، سطح سنجی و ضخامت سنجی استفاده می شود. در سازمان انرژی اتمی دستگاه هایی وجود دارند که بررسی خوردگی فلزات ، تعیین کیفیت فرآورده های صنعتی ، مواد اولیه و آلیاژها را انجام می دهند .